Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Genet Med ; 26(6): 101119, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38465576

RESUMEN

PURPOSE: Fem1 homolog B (FEM1B) acts as a substrate recognition subunit for ubiquitin ligase complexes belonging to the CULLIN 2-based E3 family. Several biological functions have been proposed for FEM1B, including a structurally resolved function as a sensor for redox cell status by controlling mitochondrial activity, but its implication in human disease remains elusive. METHODS: To understand the involvement of FEM1B in human disease, we made use of Matchmaker exchange platforms to identify individuals with de novo variants in FEM1B and performed their clinical evaluation. We performed functional validation using primary neuronal cultures and in utero electroporation assays, as well as experiments on patient's cells. RESULTS: Five individuals with a recurrent de novo missense variant in FEM1B were identified: NM_015322.5:c.377G>A NP_056137.1:p.(Arg126Gln) (FEM1BR126Q). Affected individuals shared a severe neurodevelopmental disorder with behavioral phenotypes and a variable set of malformations, including brain anomalies, clubfeet, skeletal abnormalities, and facial dysmorphism. Overexpression of the FEM1BR126Q variant but not FEM1B wild-type protein, during mouse brain development, resulted in delayed neuronal migration of the target cells. In addition, the individuals' cells exhibited signs of oxidative stress and induction of type I interferon signaling. CONCLUSION: Overall, our data indicate that p.(Arg126Gln) induces aberrant FEM1B activation, resulting in a gain-of-function mechanism associated with a severe syndromic developmental disorder in humans.

3.
Genet Med ; 25(9): 100897, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37191094

RESUMEN

PURPOSE: Mendelian etiologies for acute encephalopathies in previously healthy children are poorly understood, with the exception of RAN binding protein 2 (RANBP2)-associated acute necrotizing encephalopathy subtype 1 (ANE1). We provide clinical, genetic, and neuroradiological evidence that biallelic variants in ribonuclease inhibitor (RNH1) confer susceptibility to a distinctive ANE subtype. METHODS: This study aimed to evaluate clinical data, neuroradiological studies, genomic sequencing, and protein immunoblotting results in 8 children from 4 families who experienced acute febrile encephalopathy. RESULTS: All 8 healthy children became acutely encephalopathic during a viral/febrile illness and received a variety of immune modulation treatments. Long-term outcomes varied from death to severe neurologic deficits to normal outcomes. The neuroradiological findings overlapped with ANE but had distinguishing features. All affected children had biallelic predicted damaging variants in RNH1: a subset that was studied had undetectable RNH1 protein. Incomplete penetrance of the RNH1 variants was evident in 1 family. CONCLUSION: Biallelic variants in RNH1 confer susceptibility to a subtype of ANE (ANE2) in previously healthy children. Intensive immunological treatments may alter outcomes. Genomic sequencing in children with unexplained acute febrile encephalopathy can detect underlying genetic etiologies, such as RNH1, and improve outcomes in the probands and at-risk siblings.


Asunto(s)
Encefalopatía Aguda Febril , Encefalopatías , Leucoencefalitis Hemorrágica Aguda , Niño , Humanos , Leucoencefalitis Hemorrágica Aguda/diagnóstico , Leucoencefalitis Hemorrágica Aguda/genética , Inflamasomas , Encefalopatías/genética , Factores de Transcripción , Ribonucleasas , Proteínas Portadoras
4.
G3 (Bethesda) ; 12(5)2022 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-35325113

RESUMEN

Mutations in RNA-binding proteins can lead to pleiotropic phenotypes including craniofacial, skeletal, limb, and neurological symptoms. Heterogeneous nuclear ribonucleoproteins (hnRNPs) are involved in nucleic acid binding, transcription, and splicing through direct binding to DNA and RNA, or through interaction with other proteins in the spliceosome. We show a developmental role for Hnrnpul1 in zebrafish, resulting in reduced body and fin growth and missing bones. Defects in craniofacial tendon growth and adult-onset caudal scoliosis are also seen. We demonstrate a role for Hnrnpul1 in alternative splicing and transcriptional regulation using RNA-sequencing, particularly of genes involved in translation, ubiquitination, and DNA damage. Given its cross-species conservation and role in splicing, it would not be surprising if it had a role in human development. Whole-exome sequencing detected a homozygous frameshift variant in HNRNPUL1 in 2 siblings with congenital limb malformations, which is a candidate gene for their limb malformations. Zebrafish Hnrnpul1 mutants suggest an important developmental role of hnRNPUL1 and provide motivation for exploring the potential conservation of ancient regulatory circuits involving hnRNPUL1 in human development.


Asunto(s)
Empalme del ARN , Pez Cebra , Empalme Alternativo , Animales , Ribonucleoproteínas Nucleares Heterogéneas/genética , ARN/metabolismo , Empalme del ARN/genética , Pez Cebra/genética , Pez Cebra/metabolismo
5.
J Med Genet ; 59(6): 571-578, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-33875564

RESUMEN

BACKGROUND: This study aimed to identify and resolve discordant variant interpretations across clinical molecular genetic laboratories through the Canadian Open Genetics Repository (COGR), an online collaborative effort for variant sharing and interpretation. METHODS: Laboratories uploaded variant data to the Franklin Genoox platform. Reports were issued to each laboratory, summarising variants where conflicting classifications with another laboratory were noted. Laboratories could then reassess variants to resolve discordances. Discordance was calculated using a five-tier model (pathogenic (P), likely pathogenic (LP), variant of uncertain significance (VUS), likely benign (LB), benign (B)), a three-tier model (LP/P are positive, VUS are inconclusive, LB/B are negative) and a two-tier model (LP/P are clinically actionable, VUS/LB/B are not). We compared the COGR classifications to automated classifications generated by Franklin. RESULTS: Twelve laboratories submitted classifications for 44 510 unique variants. 2419 variants (5.4%) were classified by two or more laboratories. From baseline to after reassessment, the number of discordant variants decreased from 833 (34.4% of variants reported by two or more laboratories) to 723 (29.9%) based on the five-tier model, 403 (16.7%) to 279 (11.5%) based on the three-tier model and 77 (3.2%) to 37 (1.5%) based on the two-tier model. Compared with the COGR classification, the automated Franklin classifications had 94.5% sensitivity and 96.6% specificity for identifying actionable (P or LP) variants. CONCLUSIONS: The COGR provides a standardised mechanism for laboratories to identify discordant variant interpretations and reduce discordance in genetic test result delivery. Such quality assurance programmes are important as genetic testing is implemented more widely in clinical care.


Asunto(s)
Variación Genética , Laboratorios , Canadá , Predisposición Genética a la Enfermedad , Pruebas Genéticas/métodos , Humanos , Difusión de la Información/métodos
6.
Int J Neonatal Screen ; 7(4)2021 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-34842602

RESUMEN

Sickle cell disease (SCD), a group of inherited red blood cell (RBC) disorders caused by pathogenic variants in the beta-globin gene (HBB), can cause lifelong disabilities and/or early mortality. If diagnosed early, preventative measures significantly reduce adverse outcomes related to SCD. In Alberta, Canada, SCD was added to the newborn screening (NBS) panel in April 2019. The primary conditions screened for are sickle cell anemia (HbS/S), HbS/C disease, and HbS/ß thalassemia. In this study, we retrospectively analyzed the first 19 months of SCD screening performance, as well as described our approach for screening of infants that have received a red blood cell transfusion prior to collection of NBS specimen. Hemoglobins eluted from dried blood spots were analyzed using the Bio-Rad™ VARIANT nbs analyzer (Bio-Rad Laboratories, Inc., Hercules, CA, USA). Targeted sequencing of HBB was performed concurrently in samples from all transfused infants. During the period of this study, 43 of 80,314 screened infants received a positive NBS result for SCD, and of these, 34 were confirmed by diagnostic testing, suggesting a local SCD incidence of 1:2400 births. There were 608 infants with sickle cell trait, resulting in a carrier frequency of 1:130. Over 98% of non-transfused infants received their NBS results within 10 days of age. Most of the 188 transfused infants and 2 infants who received intrauterine transfusions received their final SCD screen results within 21 ± 10 d of birth. Our SCD screening algorithm enables detection of affected newborns on the initial NBS specimen, independent of the reported blood transfusion status.

7.
Hum Mol Genet ; 29(20): 3388-3401, 2020 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-33073849

RESUMEN

Membrane Protein Palmitoylated 5 (MPP5) is a highly conserved apical complex protein essential for cell polarity, fate and survival. Defects in cell polarity are associated with neurologic disorders including autism and microcephaly. MPP5 is essential for neurogenesis in animal models, but human variants leading to neurologic impairment have not been described. We identified three patients with heterozygous MPP5 de novo variants (DNV) and global developmental delay (GDD) and compared their phenotypes and magnetic resonance imaging (MRI) to ascertain how MPP5 DNV leads to GDD. All three patients with MPP5 DNV experienced GDD with language delay/regression and behavioral changes. MRI ranged from normal to decreased gyral folding and microcephaly. The effects of MPP5 depletion on the developing brain were assessed by creating a heterozygous conditional knock out (het CKO) murine model with central nervous system (CNS)-specific Nestin-Cre drivers. In the het CKO model, Mpp5 depletion led to microcephaly, decreased cerebellar volume and cortical thickness. Het CKO mice had decreased ependymal cells and Mpp5 at the apical surface of cortical ventricular zone compared with wild type. Het CKO mice also failed to maintain progenitor pools essential for neurogenesis. The proportion of cortical cells undergoing apoptotic cell death increased, suggesting that cell death reduces progenitor population and neuron number. Het CKO mice also showed behavioral changes, similar to our patients. To our knowledge, this is the first report to show that variants in MPP5 are associated with GDD, behavioral abnormalities and language regression/delay. Murine modeling shows that neurogenesis is likely altered in these individuals, with cell death and skewed cellular composition playing significant roles.


Asunto(s)
Discapacidades del Desarrollo/etiología , Proteínas de la Membrana/genética , Proteínas de la Membrana/fisiología , Mutación , Enfermedades del Sistema Nervioso/etiología , Nucleósido-Fosfato Quinasa/genética , Nucleósido-Fosfato Quinasa/fisiología , Adolescente , Adulto , Animales , Niño , Discapacidades del Desarrollo/metabolismo , Discapacidades del Desarrollo/patología , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Enfermedades del Sistema Nervioso/metabolismo , Enfermedades del Sistema Nervioso/patología , Adulto Joven
8.
Clin Genet ; 97(6): 835-843, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32162313

RESUMEN

Exome sequencing (ES) is an effective diagnostic tool with a high yield in consanguineous families. However, how diagnostic yield and mode of inheritance relate to family structure has not been well delineated. We reviewed ES results from families enrolled in the Care4Rare Canada research consortium with various degrees of consanguinity. We contrasted the diagnostic yield in families with parents who are second cousins or closer ("close" consanguinity) vs those more distantly related or from isolated populations ("presumed" consanguinity). We further stratified by number of affected individuals (multiple affected ["multiplex"] vs single affected [simplex]). The overall yield in 116 families was 45.7% (n = 53) with no significant difference between subgroups. Homozygous variants accounted for 100% and 75% of diagnoses in close and presumed consanguineous multiplex families, respectively. In simplex presumed consanguineous families, a striking 46.2% of diagnoses were due to de novo variants, vs only 11.8% in simplex closely consanguineous families (88.2% homozygous). Our data underscores the high yield of ES in consanguineous families and highlights that while a singleton approach may frequently be reasonable and a responsible use of resources, trio sequencing should be strongly considered in simplex families in the absence of confirmed consanguinity given the proportion of de novo variants.


Asunto(s)
Exoma/genética , Enfermedades Genéticas Congénitas/líquido cefalorraquídeo , Pruebas Genéticas , Canadá/epidemiología , Consanguinidad , Femenino , Enfermedades Genéticas Congénitas/diagnóstico , Enfermedades Genéticas Congénitas/genética , Enfermedades Genéticas Congénitas/patología , Genética de Población/tendencias , Homocigoto , Humanos , Masculino , Mutación/genética , Linaje , Secuenciación del Exoma
9.
Ann Clin Transl Neurol ; 6(8): 1395-1406, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31402629

RESUMEN

OBJECTIVE: To characterize the molecular and clinical phenotypic basis of developmental and epileptic encephalopathies caused by rare biallelic variants in CACNA2D2. METHODS: Two affected individuals from a family with clinical features of early onset epileptic encephalopathy were recruited for exome sequencing at the Centers for Mendelian Genomics to identify their molecular diagnosis. GeneMatcher facilitated identification of a second family with a shared candidate disease gene identified through clinical gene panel-based testing. RESULTS: Rare biallelic CACNA2D2 variants have been previously reported in three families with developmental and epileptic encephalopathy, and one family with congenital ataxia. We identified three individuals in two unrelated families with novel homozygous rare variants in CACNA2D2 with clinical features of developmental and epileptic encephalopathy and cerebellar atrophy. Family 1 includes two affected siblings with a likely damaging homozygous rare missense variant c.1778G>C; p.(Arg593Pro) in CACNA2D2. Family 2 includes a proband with a homozygous rare nonsense variant c.485_486del; p.(Tyr162Ter) in CACNA2D2. We compared clinical and molecular findings from all nine individuals reported to date and note that cerebellar atrophy is shared among all. INTERPRETATION: Our study supports the candidacy of CACNA2D2 as a disease gene associated with a phenotypic spectrum of neurological disease that include features of developmental and epileptic encephalopathy, ataxia, and cerebellar atrophy. Age at presentation may affect apparent penetrance of neurogenetic trait manifestations and of a particular clinical neurological endophenotype, for example, seizures or ataxia.


Asunto(s)
Canales de Calcio/genética , Enfermedades Cerebelosas/genética , Epilepsia/genética , Espasmos Infantiles/genética , Adulto , Atrofia , Ataxia Cerebelosa/genética , Femenino , Humanos , Masculino , Mutación Missense , Linaje , Convulsiones , Hermanos
10.
Life Sci Alliance ; 2(2)2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30858161

RESUMEN

Exome sequencing of two sisters with congenital cataracts, short stature, and white matter changes identified compound heterozygous variants in the PISD gene, encoding the phosphatidylserine decarboxylase enzyme that converts phosphatidylserine to phosphatidylethanolamine (PE) in the inner mitochondrial membrane (IMM). Decreased conversion of phosphatidylserine to PE in patient fibroblasts is consistent with impaired phosphatidylserine decarboxylase (PISD) enzyme activity. Meanwhile, as evidence for mitochondrial dysfunction, patient fibroblasts exhibited more fragmented mitochondrial networks, enlarged lysosomes, decreased maximal oxygen consumption rates, and increased sensitivity to 2-deoxyglucose. Moreover, treatment with lyso-PE, which can replenish the mitochondrial pool of PE, and genetic complementation restored mitochondrial and lysosome morphology in patient fibroblasts. Functional characterization of the PISD variants demonstrates that the maternal variant causes an alternative splice product. Meanwhile, the paternal variant impairs autocatalytic self-processing of the PISD protein required for its activity. Finally, evidence for impaired activity of mitochondrial IMM proteases suggests an explanation as to why the phenotypes of these PISD patients resemble recently described "mitochondrial chaperonopathies." Collectively, these findings demonstrate that PISD is a novel mitochondrial disease gene.


Asunto(s)
Carboxiliasas/genética , Catarata/genética , Enfermedades Mitocondriales/enzimología , Anomalías Musculoesqueléticas/genética , Sustancia Blanca/patología , Adulto , Carboxiliasas/metabolismo , Femenino , Fibroblastos/metabolismo , Genes Mitocondriales/genética , Células HEK293 , Homeostasis/genética , Humanos , Mitocondrias/enzimología , Enfermedades Mitocondriales/sangre , Enfermedades Mitocondriales/patología , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Fenotipo , Sitios de Empalme de ARN/genética , Saccharomyces cerevisiae/enzimología , Transfección , Secuenciación del Exoma
11.
Eur J Hum Genet ; 27(4): 582-593, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30622326

RESUMEN

The Integrator complex subunit 1 (INTS1) is a component of the integrator complex that comprises 14 subunits and associates with RPB1 to catalyze endonucleolytic cleavage of nascent snRNAs and assist RNA polymerase II in promoter-proximal pause-release on protein-coding genes. We present five patients, including two sib pairs, with biallelic sequence variants in INTS1. The patients manifested absent or severely limited speech, an abnormal gait, hypotonia and cataracts. Exome sequencing revealed biallelic variants in INTS1 in all patients. One sib pair demonstrated a missense variant, p.(Arg77Cys), and a frameshift variant, p.(Arg1800Profs*20), another sib pair had a homozygous missense variant, p.(Pro1874Leu), and the fifth patient had a frameshift variant, p.(Leu1764Cysfs*16) and a missense variant, p.(Leu2164Pro). We also report additional clinical data on three previously described individuals with a homozygous, loss of function variant, p.(Ser1784*) in INTS1 that shared cognitive delays, cataracts and dysmorphic features with these patients. Several of the variants affected the protein C-terminus and preliminary modeling showed that the p.(Pro1874Leu) and p.(Leu2164Pro) variants may interfere with INTS1 helix folding. In view of the cataracts observed, we performed in-situ hybridization and demonstrated expression of ints1 in the zebrafish eye. We used Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 to make larvae with biallelic insertion/deletion (indel) variants in ints1. The mutant larvae developed typically through gastrulation, but sections of the eye showed abnormal lens development. The distinctive phenotype associated with biallelic variants in INTS1 points to dysfunction of the integrator complex as a mechanism for intellectual disability, eye defects and craniofacial anomalies.


Asunto(s)
Catarata/genética , Anomalías Craneofaciales/genética , Discapacidades del Desarrollo/genética , Proteína Wnt1/genética , Adolescente , Adulto , Animales , Catarata/fisiopatología , Niño , Preescolar , Anomalías Craneofaciales/fisiopatología , Discapacidades del Desarrollo/fisiopatología , Femenino , Mutación del Sistema de Lectura/genética , Gastrulación/genética , Humanos , Lactante , Cristalino/crecimiento & desarrollo , Cristalino/patología , Masculino , Mutación Missense/genética , Linaje , Pliegue de Proteína , Secuenciación del Exoma , Proteína Wnt1/química , Adulto Joven , Pez Cebra/genética
12.
J Obstet Gynaecol Can ; 40(11): 1417-1423, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30473118

RESUMEN

OBJECTIVE: Most prenatally identified congenital heart defects (CHDs) are the sole structural anomaly detected; however, there is a subgroup of cases where the specific genetic cause will impact prognosis, including chromosome abnormalities and single-gene causes. Next-generation sequencing of all the protein coding regions in the genome or targeted to genes involved in cardiac development is currently possible in the prenatal period, but there are minimal data on the clinical utility of such an approach. This study assessed the outcome of a CHD gene panel that included single-gene causes of syndromic and non-syndromic CHDs. METHOD: Sixteen cases with a fetal CHD identified on prenatal ultrasound were studied using a 108 CHD gene panel. DNA was extracted from cultured amniocytes. RESULTS: There was no diagnostic pathogenic variant identified in these cases. There was an average of 2.9 reportable variants identified per case and the majority of them were variants of uncertain significance. CONCLUSION: Next-generation sequencing has the potential for increased genetic diagnosis for fetal anomalies. However, the large number of variants and the absence of an examinable patient make the interpretation of these variants challenging.


Asunto(s)
Cardiopatías Congénitas , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Diagnóstico Prenatal/métodos , Femenino , Cardiopatías Congénitas/diagnóstico , Cardiopatías Congénitas/genética , Humanos , Análisis de Secuencia por Matrices de Oligonucleótidos , Embarazo
13.
Am J Med Genet A ; 176(11): 2487-2493, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30244537

RESUMEN

PNPT1 is a mitochondrial RNA transport protein that has been linked to two discrete phenotypes, namely isolated sensorineural hearing loss (OMIM 614934) and combined oxidative phosphorylation deficiency (OMIM 614932). The latter has been described in multiple families presenting with complex neurologic manifestations in childhood. We describe adult siblings with biallelic PNPT1 variants identified through WES who presented with isolated severe congenital sensorineural hearing loss (SNHL). In their 40s, they each developed and then followed a nearly identical neurodegenerative course with ataxia, dystonia, and cognitive decline. Now in their 50s and 60s, all have developed the additional features of optic nerve atrophy, spasticity, and incontinence. The natural history of the condition in this family may suggest that the individuals previously reported as having isolated SNHL may be at risk of developing multisystem disease in late adulthood, and that PNPT1-related disorders may constitute a spectrum rather than distinct phenotypes.


Asunto(s)
Secuenciación del Exoma , Exorribonucleasas/genética , Pérdida Auditiva Sensorineural/genética , Hermanos , Adulto , Exorribonucleasas/metabolismo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Linaje , ARN Mensajero/genética , ARN Mensajero/metabolismo
14.
Eur J Hum Genet ; 26(12): 1752-1758, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30089828

RESUMEN

Pontocerebellar hypoplasia (PCH) is a heterogeneous neurodegenerative disorder with a prenatal onset. Using whole-exome sequencing, we identified variants in the gene Coenzyme A (CoA) synthase (COASY) gene, an enzyme essential in CoA synthesis, in four individuals from two families with PCH, prenatal onset microcephaly, and arthrogryposis. In family 1, compound heterozygous variants were identified in COASY: c.[1549_1550delAG]; [1486-3 C>G]. In family 2, all three affected siblings were homozygous for the c.1486-3 C>G variant. In both families, the variants segregated with the phenotype. RNA analysis showed that the c.1486-3 C>G variant leads to skipping of exon 7 with partial retention of intron 7, disturbing the reading frame and resulting in a premature stop codon (p.(Ala496Ilefs*20)). No CoA synthase protein was detected in patient cells by immunoblot analysis and CoA synthase activity was virtually absent. Partial CoA synthase defects were previously described as a cause of COASY Protein-Associated Neurodegeneration (CoPAN), a type of Neurodegeneration and Brain Iron Accumulation (NBIA). Here we demonstrate that near complete loss of function variants in COASY are associated with lethal PCH and arthrogryposis.


Asunto(s)
Artrogriposis/genética , Enfermedades Cerebelosas/genética , Mutación con Pérdida de Función , Microcefalia/genética , Transferasas/genética , Feto Abortado/anomalías , Artrogriposis/patología , Células Cultivadas , Enfermedades Cerebelosas/patología , Humanos , Recién Nacido , Masculino , Microcefalia/patología , Síndrome , Transferasas/metabolismo
15.
Genet Med ; 20(3): 294-302, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-28726806

RESUMEN

PurposeThe purpose of this study was to develop a national program for Canadian diagnostic laboratories to compare DNA-variant interpretations and resolve discordant-variant classifications using the BRCA1 and BRCA2 genes as a case study.MethodsBRCA1 and BRCA2 variant data were uploaded and shared through the Canadian Open Genetics Repository (COGR; http://www.opengenetics.ca). A total of 5,554 variant observations were submitted; classification differences were identified and comparison reports were sent to participating laboratories. Each site had the opportunity to reclassify variants. The data were analyzed before and after the comparison report process to track concordant- or discordant-variant classifications by three different models.ResultsVariant-discordance rates varied by classification model: 38.9% of variants were discordant when using a five-tier model, 26.7% with a three-tier model, and 5.0% with a two-tier model. After the comparison report process, the proportion of discordant variants dropped to 30.7% with the five-tier model, to 14.2% with the three-tier model, and to 0.9% using the two-tier model.ConclusionWe present a Canadian interinstitutional quality improvement program for DNA-variant interpretations. Sharing of variant knowledge by clinical diagnostic laboratories will allow clinicians and patients to make more informed decisions and lead to better patient outcomes.


Asunto(s)
Exactitud de los Datos , Pruebas Genéticas/normas , Difusión de la Información , Mejoramiento de la Calidad , Canadá , Toma de Decisiones Clínicas , Bases de Datos Genéticas , Genes BRCA1 , Genes BRCA2 , Asesoramiento Genético , Pruebas Genéticas/métodos , Variación Genética , Programas de Gobierno , Humanos , Reproducibilidad de los Resultados , Flujo de Trabajo
16.
BMJ Open ; 7(7): e017012, 2017 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-28710227

RESUMEN

INTRODUCTION: Paediatric mild traumatic brain injury (mTBI) is a public health burden. Clinicians urgently need evidence-based guidance to manage mTBI, but gold standards for diagnosing and predicting the outcomes of mTBI are lacking. The objective of the Advancing Concussion Assessment in Pediatrics (A-CAP) study is to assess a broad pool of neurobiological and psychosocial markers to examine associations with postinjury outcomes in a large sample of children with either mTBI or orthopaedic injury (OI), with the goal of improving the diagnosis and prognostication of outcomes of paediatric mTBI. METHODS AND ANALYSIS: A-CAP is a prospective, longitudinal cohort study of children aged 8.00-16.99 years with either mTBI or OI, recruited during acute emergency department (ED) visits at five sites from the Pediatric Emergency Research Canada network. Injury information is collected in the ED; follow-up assessments at 10 days and 3 and 6 months postinjury measure a variety of neurobiological and psychosocial markers, covariates/confounders and outcomes. Weekly postconcussive symptom ratings are obtained electronically. Recruitment began in September 2016 and will occur for approximately 24 months. Analyses will test the major hypotheses that neurobiological and psychosocial markers can: (1) differentiate mTBI from OI and (2) predict outcomes of mTBI. Models initially will focus within domains (eg, genes, imaging biomarkers, psychosocial markers), followed by multivariable modelling across domains. The planned sample size (700 mTBI, 300 OI) provides adequate statistical power and allows for internal cross-validation of some analyses. ETHICS AND DISSEMINATION: The ethics boards at all participating institutions have approved the study and all participants and their parents will provide informed consent or assent. Dissemination will follow an integrated knowledge translation plan, with study findings presented at scientific conferences and in multiple manuscripts in peer-reviewed journals.


Asunto(s)
Escala de Coma de Glasgow , Pruebas Neuropsicológicas , Síndrome Posconmocional/diagnóstico , Síndrome Posconmocional/psicología , Adolescente , Canadá , Niño , Práctica Clínica Basada en la Evidencia/normas , Femenino , Humanos , Estudios Longitudinales , Masculino , Análisis Multivariante , Dimensión del Dolor , Estudios Prospectivos , Calidad de Vida , Análisis de Regresión , Proyectos de Investigación
18.
J Clin Invest ; 127(3): 912-928, 2017 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-28165339

RESUMEN

Steroid-resistant nephrotic syndrome (SRNS) causes 15% of chronic kidney disease cases. A mutation in 1 of over 40 monogenic genes can be detected in approximately 30% of individuals with SRNS whose symptoms manifest before 25 years of age. However, in many patients, the genetic etiology remains unknown. Here, we have performed whole exome sequencing to identify recessive causes of SRNS. In 7 families with SRNS and facultative ichthyosis, adrenal insufficiency, immunodeficiency, and neurological defects, we identified 9 different recessive mutations in SGPL1, which encodes sphingosine-1-phosphate (S1P) lyase. All mutations resulted in reduced or absent SGPL1 protein and/or enzyme activity. Overexpression of cDNA representing SGPL1 mutations resulted in subcellular mislocalization of SGPL1. Furthermore, expression of WT human SGPL1 rescued growth of SGPL1-deficient dpl1Δ yeast strains, whereas expression of disease-associated variants did not. Immunofluorescence revealed SGPL1 expression in mouse podocytes and mesangial cells. Knockdown of Sgpl1 in rat mesangial cells inhibited cell migration, which was partially rescued by VPC23109, an S1P receptor antagonist. In Drosophila, Sply mutants, which lack SGPL1, displayed a phenotype reminiscent of nephrotic syndrome in nephrocytes. WT Sply, but not the disease-associated variants, rescued this phenotype. Together, these results indicate that SGPL1 mutations cause a syndromic form of SRNS.


Asunto(s)
Aldehído-Liasas , Movimiento Celular/genética , Ictiosis Lamelar , Células Mesangiales/enzimología , Mutación , Síndrome Nefrótico , Aldehído-Liasas/genética , Aldehído-Liasas/metabolismo , Animales , Línea Celular , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Femenino , Humanos , Ictiosis Lamelar/enzimología , Ictiosis Lamelar/genética , Ictiosis Lamelar/patología , Masculino , Células Mesangiales/patología , Ratones , Ratones Noqueados , Síndrome Nefrótico/enzimología , Síndrome Nefrótico/genética , Síndrome Nefrótico/patología , Transporte de Proteínas/genética , Ratas
19.
Can J Cardiol ; 33(2): 292.e5-292.e7, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27965028

RESUMEN

We report the finding of 2 de novo mutations in an 8-year-old boy with developmental delay and autism who underwent heart transplantation at 1 year of age for idiopathic dilated cardiomyopathy. We identified a de novo microdeletion at chromosome 2p16.3 involving the neurexin-1 (NRXN1) gene and a de novo pathologic variant (Pro838Leu) in the myosin heavy chain 7 (MYH7) gene. This case emphasizes the importance of comprehensive genetic evaluation in patients with cardiomyopathy, particularly if they have extracardiac abnormalities, and the necessity of interpreting variants with attention to the phenotype. A complete genetic diagnosis may require multiple testing modalities.


Asunto(s)
Trastorno Autístico/complicaciones , Miosinas Cardíacas/genética , Cardiomiopatía Dilatada/genética , Moléculas de Adhesión Celular Neuronal/genética , ADN/genética , Trasplante de Corazón , Mutación , Cadenas Pesadas de Miosina/genética , Proteínas del Tejido Nervioso/genética , Trastorno Autístico/genética , Proteínas de Unión al Calcio , Miosinas Cardíacas/metabolismo , Cardiomiopatía Dilatada/complicaciones , Cardiomiopatía Dilatada/cirugía , Moléculas de Adhesión Celular Neuronal/metabolismo , Niño , Análisis Mutacional de ADN , Humanos , Masculino , Cadenas Pesadas de Miosina/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Moléculas de Adhesión de Célula Nerviosa , Linaje , Fenotipo
20.
Am J Med Genet A ; 173(3): 596-600, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27671926

RESUMEN

Leigh disease is a progressive, infantile-onset, neurodegenerative disorder characterized by feeding difficulties, failure to thrive, hypotonia, seizures, and central respiratory compromise. Metabolic and neuroimaging investigations typically identify abnormalities consistent with a disorder of mitochondrial energy metabolism. Mutations in more than 35 genes affecting the mitochondrial respiratory chain encoded from both the nuclear and mitochondrial genomes have been associated with Leigh disease. The clinical presentations of five individuals of Hutterite descent with Leigh disease are described herein. An identity-by-descent mapping and candidate gene approach was used to identify a novel homozygous c.393dupA frameshift mutation in the NADH dehydrogenase (ubiquinone) Fe-S protein 4 (NDUFS4) gene. The carrier frequency of this mutation was estimated in >1,300 Hutterite individuals to be 1 in 27. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Etnicidad/genética , Mutación del Sistema de Lectura , Estudios de Asociación Genética , Enfermedad de Leigh/diagnóstico , Enfermedad de Leigh/genética , NADH Deshidrogenasa/genética , Fenotipo , Canadá , Consanguinidad , Análisis Mutacional de ADN , Complejo I de Transporte de Electrón , Femenino , Genotipo , Humanos , Lactante , Imagen por Resonancia Magnética , Masculino , Análisis de Secuencia por Matrices de Oligonucleótidos , Linaje , Polimorfismo de Nucleótido Simple , Hermanos , Estados Unidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...